Hyacinthoides non-scripta

(Formerly: Scilla nutans)
Asparagus Family [Asparagaceae]
(Formerly in: Lily Family [Liliaceae]])

month8apr month8april month8may month8jun month8june

flower8blue flower8azure
smell8sweet smell8fragrant

10th May 2014, a wood near Hawkshead, Cumbria. Photo: © RWD
A woodland glade covered in bluebells.

19th May 2006, near Yew Tarn, Coniston, Cumbria. Photo: © RWD
Forms a deep-blue carpet in deciduous woodland with dappled shade, but can also grow out in the open. A sweet faint scent said to have 35 components attracts pollinating insects deep into the woods.

11th May 2012, Torver, Cumbria. Photo: © RWD
Up to 50cm high, shorter than the similar and invasive Spanish Bluebell and its even more aggressive hybrid with Bluebell Hyacinthoides × massartiana.

11th May 2012, Torver, Cumbria. Photo: © RWD
Un-like Spanish Bluebell or the hybrid, Bluebells have flowers with stalks emerging from one side and drooping to one side.

3rd May 2011, near Calver, Derbyshire. Photo: © RWD
Also, un-like Spanish Bluebell, the flowers are narrower down the length and do not flaring out until the very end, where the six petals recurve back upon themselves. Lacking on Spanish Bluebells are the pairs of narrow blue bracts peeling away from where flower stalk meets main stem.

3rd May 2011, near Calver, Derbyshire. Photo: © RWD
The curved stems may also be suffused with blueness partly masking the green chlorophyll.

3rd May 2011, near Calver, Derbyshire. Photo: © RWD
Petals only unfold near the end, and curve tightly backwards upon themselves.

14th May 2010, Brigsteer, Cumbria. Photo: © RWD
Like the similar Squills, the flowers can also appear striped blue and mauve. Note the pair of narrow purple (rather than blue) bracts most easily seen below the bottom flower.

14th May 2010, Brigsteer, Cumbria. Photo: © RWD
In any population several albino (and lilac) specimens will be found.

3rd May 2011, near Calver, Derbyshire. Photo: © RWD
Six stamens bearing white pollen. There are three inner and three outer petals.

3rd May 2011, near Calver, Derbyshire. Photo: © RWD
The pollen is white (whereas in Spanish Bluebell, the pollen is blue). In the hybrid a variety of characteristics is variously exhibited which are intermediate in form and colour between both Bluebell and Spanish Bluebell.

25th May 2012, Dodgson Wood, Coniston Water, Cumbria. Photo: © RWD
The stems straighten up when going to seed, the flowers point skywards too and the petals wither away revealing an enlarging green seed pod.

25th May 2012, Dodgson Wood, Coniston Water, Cumbria. Photo: © RWD
Seed pods have the remains of the style making a long rod at the apex.

25th May 2012, Dodgson Wood, Coniston Water, Cumbria. Photo: © RWD
Seed pods are tri-lobed, bearing three seeds.

12th July 2020, Birkdale Dunes, Sefton Coast. Photo: © RWD
A few 3-lobed seed capsules extant with the long style at centre-top.

12th July 2020, Birkdale Dunes, Sefton Coast. Photo: © RWD
The green seed capsules turn first pale green than pale fawn whereupon they open at the top each with their 3 black seeds in, the shadows of which near the base can be seen best on the 2nd pod up from the bottom.

12th July 2020, Birkdale Dunes, Sefton Coast. Photo: © RWD
The 3-lobed seed capsule has opened revealing the 3 shiny, roundish blackish seeds which are much smaller than the space available for them. The seeds also have a small pale-fawn coloured attachment. The style is still attached on the left with intact stigma, but note that it was also attached at all three corners before until it split open, and the style also got ripped into 3 parts.

11th May 2012, Torver, Cumbria. Photo: © RWD
There are no stem leaves, only a few basal ones, between three and six, which are long, keeled and narrow, 7-15mm wide, slightly tapering over much of its length (until near the tip when the tapering is sudden).

Easily mis-identified as : Spanish Bluebell (Hyacinthoides hispanica) (which is becoming rare in the UK now). Also mis-identified as the hybrid of English Bluebell with Spanish Bluebell (Hyacinthoides × massartiana), which is promiscuous around and near gardens, but both of those flare out sooner and wider than Bluebell and lack any tubular portion. Both Spanish Bluebell and the hybrid have either paler blue flowers or are often pale pink or white. Spanish Bluebell not only has more flowers than (English) Bluebell but the stem is stouter and straighter without bending over, the flowers emerge from all sides of the stem and do not droop downwards.

Bluebell hybridizes with the garden variety of Spanish Bluebell (Hyacinthoides × massartiana) to produce specimens which have a spectrum of characteristics between the two parental extremes forming a so-called 'hybrid swarm'. This hybrid is thought to be a cross between or native Bluebell and either and/or the double or quadruple chromosome variety of Spanish Bluebell (which is nothing like the Spanish Bluebell found in Spain itself, which likes limestone cliffs and rocks rather than the woodlands of our Bluebell). But the more the hybrid Hyacinthoides × massartiana hybridizes with Blubell, the closer the crosses become to English Bluebell, eventually becoming English Bluebell itself.

To identify (English) Bluebell the reader needs to observe ALL THREE characteristics:
•The colour of the anthers (which should be cream for Bluebell, not blue)
•The stance of the stem (drooping to one side for Bluebell)
•Strongly re-curved petals

If the anthers are blue AND the stem is upright AND the petals are spread flat outwards then it is the (very rare in the UK) Spanish Bluebell (Hyacinthoides hispanica).

If the flowers are a mixture of these characteristics such as the anthers are pale blue (or sometimes greenish) AND the petals are flared out from a wide tube (but not completely flattened) AND the flowers dangle nearly symmetrically about the stem or to one side then it is the hybrid Spanish Bluebell (Hyacinthoides × massartiana). This hybrid does not like the shade of forests but likes to be out in the open as much as possible; probably in your garden and many other open places.

Some similarities to : Squills such as Spring Squill, Autumn Squill, Alpine Squill and Siberian Squill but all those have much more star-like open flowers and which do not droop downwards.

Slight resemblance to : Italian Bluebell (Hyacinthoides italica) but that has a shorter and conical spike of blue flowers, and occurs in just a few scattered hectads in England.

No relation to : Harebell [a blue flower belonging to the un-related Bellflower Family (Campanulaceae) which in Scotland are called 'Bluebells'].

The flowers are more trumpet-shaped than bell-shaped, but the name takes precedence. They have a slight sweet fragrance. Bluebells do not like to be in the full glare of the summer sun all day, and will only carpet relatively open and damp deciduous forests with dappled shade. The UK has about half the Worlds' population of Bluebells, being a particularly quintessential part of England. Moreover, the UK is unique in that in no other country does the bluebell form dense glades in open woodland. In that regard, although it may not be particularly rare in the UK, in the rest of Europe it certainly is, hence they are a protected species under European Law as an Atlantic species, of which the UK is a signatory.

However, not all our dense swathes of Bluebell are in woodland, some are most definitely in much more open ground, such as amidst the last years' withered bracken flowering and self-seeding well before the bracken re-awakens in late spring. In such locations it is not in dappled shade, but almost full sun.

Despite seeming so profligate, they are a rare and protected species and threatened by hybridization with Spanish Bluebell, the hybrid, known as Hyacinthoides × massartiana, spreading much more readily than the Spanish parent. The hybrid is a serious threat to the Bluebell and forms what is known as a 'hybrid swarm' with a full spectrum of characteristics between Bluebell and Spanish Bluebell.

The black seeds germinate on the surface, but as they grow, the contractile roots keeps pulling the bulb further down into the earth until the bulb reaches as far as down as 12cm. This is one of the reasons it enjoys a soft woodland soil, and explains why it wont grow in hard or less deep soils.

Chequered Skipper
Pearl-bordered Fritillary
Small Pearl-bordered Fritillary

MALONYLAWOBANIN - the Blue Pigment

When the flowers first emerge both stem and flowers are suffused with the deepest blue imaginable, a colour so deep that no current camera, file-format nor monitor screen can either capture, store nor portray the true colour with their very limited triangular colour gamut. All three: camera, file-format and monitor would perhaps require six different coloured pixels to be capable of capturing or representing the true colour; a technology that is nowhere on the foreseeable horizon. After a while the colour of the flower fades to a lighter tone of azure blue.

The colour was, until only recently, thought to be due to an anthocyanin derivative: delphinidin 3-p-coumarylglucoside-5-glucoside, but it is now known that the blue compound within Bluebell is actually malonated. A new common name has been assigned to this novel compound, Malonylawobanin, which is O-(6-O-(trans-p-coumaroyl)-β-D-glucosyl)-5-O-(6-O-malonyl-β-D-glucosyl)delphinidin. This blue compound is also present in the blue flowers of Asiatic Dayflower (Commelina communis) from where it is extracted to be used as a blue pigment. Note that Bluebells themselves cannot be harvested for this blue pigment as they are protected under UK law and it is illegal to even pick them without the landowners consent.


The anthocyanidin Delphinidin is shown in blue, and is the compound responsible for the blue colouring in Delphinium flowers as well as several other flowers. Attached to this are two glucosyl groups, shown in red. To one of these is attached a malonyl group (derived from Malonic Acid) shown in green, and to the other a coumaryl group (derived from Coumaric Acid) shown in orange. Several of these groups share the same oxygen atoms.

The structures below are to illustrate the individual components of Malonylawobanin; they are not reported to be present as separate entities within Bluebells.

 Delphinidin is said to be the anthocyanidin present in Delphiniums and Violas, and is a blue pigment with anti-oxidant properties. It is also present in the berries of Cranberry. It is sensitive to pH, turning red in acidic solutions. Other glycosides of Delphinidin which are present in various other plants are Myrtillin (Delphinidin 3-O-glucoside), present in Blackcurrants and in the berries of Blueberry; Chrysanthemin; Tulipanin (Delphinidin 3-O-rutinoside) which is also found in Tulips and in the berries of Blackcurrant and in species of Barberry; and Violdelphin (a complex glucoside with four sugar groups and two para-HydroxyBenzoic Acid groups and which is responsible for the purplish coloration in Chinese Aconite) and in blue flowers from the Campanula genus such as Peach-Leaved Bellflower.

Chemically, Malonic Acid sits between Oxalic Acid and Succinic Acid, all of which are saturated di-carboxylic acids. Malonic Acid occurs in high concentration in Beetroots. Coumaric Acid is a hydroxycinnamic acid which should not be confused with Coumarin, an entirely un-related compound. The para-form of Coumaric Acid is shown above, and is the most naturally abundant of the three isomers that Coumaric Acid can exist in, being present in, for example, Tomato, Carrot and Garlic. It is a major component of lignocellulose.

 A related blue pigment, the 3-p-coumarylglucoside-5-malonylglucoside derivative of Cyanidin, is present in several members of the Dead-Nettle and Mint Family (Lamiaceae). Here the blue structure is that of Cyanidin rather than Delphinidin (the only difference being the lack of one of the -OH groups on the blue coloured structure).

Compare with the Violdelphin anthocyanin found within blue species of Campanula such as Canterbury-bells Campabula medium.



Bluebells also contain many polyhydroxylated Pyrrolidines, which are analogues of sugars but contain nitrogen in the ring rather than oxygen; they are potent glucosidase inhibitors. Because of all the hydroxyl groups around them they can get mis-identified as sugars within the mammalian body where they may wreak havoc on the system. Polyhydroxylated Pyrrolidines such as Nectrisine (D-ABI or 1,4,-dideoxy -1,4-imino-D-arabinitol) and DMDP (2R,5R-dihydroxymethyl -3R,4R- dihydroxypyrrolidine). DMDP is also found in a tropical bean from Costa Rica where it is cultivated and harvested for DMDP and used as a pesticide. They also contain many polyhydroxylated Pyrrolizidines such as Hyacinthine C1 which is a moderate inhibitor of amyloglucosidase, an enzyme.


Polyhydroxylated Pyrrolizidines (not to be confused with the similarly spelled polyhydrozylated pyrrolidines) are also surrounded by numerous hydroxyl groups mimicking sugars, and these also may similarly be mistaken for sugars and gum up the works when ingested by mammals.

Altogether, 19 polyhydroxylated pyrrolizidine alkaloids known as Hyacinthacines) have been isolated from five members of the Hyacinthaceae Family, being: Bluebell (Hyacinthoides non-scripta), Garden Grape-Hyacinth (Muscari armeniacum),Siberian Squill (Scilla sibirica), Wood Hyacinth (Scilla campanulata) and Silver Squill (Scilla socialis), the latter two are non-native to the UK.

These Hyacinthacines are classified into three groups: A1-A7, B1-B7 and C1-C5, based upon the number of hydroxy groups on the first ring. The letter denotes the number of hydroxy groups on the first ring, thus 'A' for zero -OH groups on the first ring, B denotes one -OH group, whilst the C denotes two -OH groups on the first ring. The Hyacinthacines have parallels with the Calystegines, which are polyhydroxylated NorTropanes.

Bluebells are known to cause cases of poisoning in livestock, and it is thought that compounds like the above are responsible, being glucosidase inhibitors. The Hyacinthacines are only weak to moderate glucosidase inhibitors.


The Scillarens are a group of cardiac glycosides found in species of Hyacinthoides (Bluebells) and Scilla (Squills). They are poisonous, but because they are not absorbed in the gut very well, are not usually lethal. It is based on Hellebrin, another cardiac glycoside found in the plant Black Hellebore (aka Christmas-Rose) (Helleborus niger) [formerly Radix hellebori nigri]. Scillaren A has two sugar units attached, Rhamnosyl (rha) followed by Glucosyl (glc) and the cardiac effects are similar to those of the cardiac glycosides extractible from Foxglove apart from that its effects are of shorter duration. The Scillarens produce symptoms of copious diuresis. The cardiac action is often present when other cardiac glycosides such as those from Foxglove fail to act, or are in-sufficient, or where intolerance to Digitalis exists. It has a high therapeutic index and is also rapidly elimination from the body; it is therefore able to maintain cardiac effects in those cases where prolonged treatment is necessary. It is a very useful pharmaceutical. Naturally, with Bluebell being such an endangered species, no pharmaceuticals are harvested from it, although it is possible that it is harvested from White Squill (aka Sea Squill, Drimia maritima) [formerly Scilla maritima] or from Red Squill (both non-native).

Scillaren A is also found in the non-native Red Squill. The enzyme scillarinase can cleave off the glucose unit selectively leaving Proscillaridin A which has just a rhamnose sugar unit.

Scillarenin is the aglycone of both Scillaren A and Proscillarenin A and is also probably present. In any case, the sugar units will be removed from both Scillaren A and Proscillaridin A if ingested leaving Scillarenin.

  Hyacinthoides non-scripta  ⇐ Global Aspect ⇒ Asparagaceae  

 family8Asparagus family8Asparagaceae
 BSBI maps



Hyacinthoides non-scripta

(Formerly: Scilla nutans)
Asparagus Family [Asparagaceae]
(Formerly in: Lily Family [Liliaceae]])