Armeria maritima

Thrift Family [Plumbaginaceae]  

month8apr month8april month8May month8jun month8june month8jul month8july month8Aug month8sep month8sept month8Oct


31st May 2007, Angerton Point, Broughton in Furness, Cumbria Photo: © RWD
A Drift of Thrift. It can carpet short grassy fore-shores providing it is not invaded by the sea too often.

26th May 2004, Arnside Cliffs, Lancashire. Photo: © RWD
Loves growing on rocky limestone cliff nooks near the sea. It tolerates lead which is found in limestone and grows about 6 to 10 inches tall.

26th May 2004, Arnside Cliffs, Lancashire. Photo: © RWD
Forms clumps. The flowers are pink and all clustered at the very top of a single grey-ish green stalk.

26th May 2004, Arnside Cliffs, Lancashire. Photo: © RWD
The flowers are small and clustered together. They are more often seen in only half-opened, as here, and are pink to whitish-pink.

11 th July 2005, Humphrey Head, Grange Over Sands. Photo: © RWD
Each flower with five petals. It is possible that this specimen is a garden escapee.

11 th July 2005, Humphrey Head, Grange Over Sands. Photo: © RWD
The petals have three darker veins. Five anthers bear creamy yellow pollen. It is possible that this specimen is a garden escapee.

14th June 2011, Southport Dunes, Sefton Coast, Lancs. Photo: © RWD
The five papery bracts are pinkish red and continue about a centimetre down the stem.

14th June 2011, Southport Dunes, Sefton Coast, Lancs. Photo: © RWD
The number of flowers atop a single stem varies considerably.

14th June 2011, Southport Dunes, Sefton Coast, Lancs. Photo: © RWD
The flowers maybe a deeper shade of pink in the centre. Deep in the centre there is a small woolly mass of white hairs.

31st May 2007, Angerton Point, Broughton in Furness, Cumbria Photo: © RWD
Five petals. The five stamens are pinkish and bear yellowish anthers with cream-coloured pollen.

2nd June 2006, Warton Crag, Carnforth. Photo: © RWD
Sometimes the flowers are more white than pink, and with far fewer at the top of each single stalk.

2nd June 2006, Warton Crag, Carnforth. Photo: © RWD
The papery bracts are often coloured a dark brownish red, and extend about an inch down the stem.

Some similarities to : Chives (but the petals of Chive flowers are much longer and never open wide) and to Rosy Garlic (but there the flowers all have long thin drooping stalks).

Hybridizes with: Jersey Thrift (Armeria arenaria) to produce Armeria arenaria × maritima which is even more robust than is Jersey Thrift and is present in only 3 hectads in the UK.

Thrift (Armeria maritima) can be one of these three sub-species:

  • Armeria maritima ssp. maritima up to 30cm tall, stems usually hairy and outermost bracts shorter than inner and is common around UK coasts.
  • Armeria maritima ssp. elongata is taller at 20-55cm, native, but confined to areas around South Lincolnshire and Leicestershire.
  • Armeria maritima ssp. pseudoarmeria which is a non-native from Portugal and grown in gardens, but now extinct in the wild in the UK.

It is possible that the whiter ones with fewer flowers above are are the 'ordinary' Armeria maritima whereas the slightly larger pink ones with more flowers are the ssp. maritima sub-species, but your author does not really know.

The flowers smell of honey.

Thrift is the County flower for Orkney although some people think that that honour should best go to Oysterplant since Thrift is ubiquitous on the coast and grows almost anywhere else whereas Oysterplant is altogether much more rare growing only on select coasts in parts of Scotland. It is also the County Flower for Buteshire, Pembrokeshire and the Isles of Scilly.


Heavy metals are normally toxic to plants but not to Thrift. Thrift sequesters heavy metals particularly copper, and to a lesser extent cadmium, mercury, zinc, nickel, iron and manganese in that order. It is a hyperaccumulator of heavy metals and can be usefully employed as a phytoremediator to clean up contaminated lands. The copper is picked up by the roots and is to be found in the roots and leaves, where it is preferentially bound to proteins. Because copper stresses the cell, heat shock proteins are involved. Thrift concentrates the copper by between 2000 and 4000 times greater than other plants growing in the same area, it is a hyperaccumulator of copper. The heavy metals can appear on the surface of the leaves as a precipitate. It is no coincidence that the Family Name (Plumbaginacaea) has the same roots as the latin name for lead (plumbum, chemical abbreviation Pb). It is able to grow in heavily contaminated soils where other plants may struggle to survive, such as salt marshes, serpentine rocks, very acidic soils and heavy metal mine tailings and waste heaps near lead and zinc mines. Those growing on serpentine rocks have a slightly different appearance and may be a different species, but authorities disagree.

Upon exposure to heavy metals, plants respond by synthesising a variety of compounds to deal with it. These include glutathione, phytochelatin, the amines spermine, spermidine, putrescine, nicotianamine and mugineic acid and the amino acid proline. Proline may be involved as the chelating agent to sequester the heavy metals, but many other mechanisms and compounds may be involved.

Glutathione is a tri-peptide present in all plant and animal cells and which is unusually sensitive to toxins within cells. It possesses an active thiol group (SH) and is an anti-oxidant, reducing any poisonous hydrogen peroxide. It is involved in the pathways against plant pathogens and plant defence signalling.

Glutathione is the pre-cursor to the generation of phytochelatins, which are of variable length (n). Phytochelatins are produced from glutathione by the action of the enzyme phytochelatin synthase. As the name implies, phytochelatins are effective chelators (sequesters) of any toxic heavy metals that may find their way into plants, such as lead or cadmium, etc. When heavy metal ions enter any cells, they bind to glutathione on the thiol (SH) group, blocking the active region. Because Phtyochelatin synthase uses glutathione in the blocked state to produce phytochelatin, more is produced when heavy metal ion concentration increases. When the phytochelatin has absorbed a heavy metal ion, it is then sequestered safely away into a vacuole, where it accumulates.

Nicotianamine occurs in all plant cells where it chelates both Fe3+ and Fe2+ ions and appears to be involved in the internal transport of iron and other metals. The scavenging of Fe3+ and of nickel (whose toxic concentration is high in soils made from serpentine rock) may be important in protecting the cell from oxidative damage. It is chemically similar to Mugineic Acid, which is also ubiquitous in all plants. Both possess a four membered ring. Mugineic Acid, another metal chelator, is an amino acid which is excreted by some grass plants when they are deficient in iron. Thus deposited in the soil, the Mugineic Acid forms a complex with the previously un-available iron in the soil, mobilising it and enabling its subsequent uptake by the roots. By this means the iron is made available to the plant. They are also able, by similar means, to transport wanted zinc into the plant when the plant is deficient in zinc. But this mechanism might also transport other and un-wanted heavy metals into the plant, which the plant will then have to deal with (by chelating it safely away). Shown is the Mugineic Acid complex with ferric iron ready for uptake by the roots.

Putrescine, Spermidine and Spermine are all poly-amines found in all plant cells. Both bind to the phosphate backbone of nucleic acids. The polyamines are crucial to cell migration, proliferation and differentiation in both plants and animals, so are tightly regulated within cells. Spermidine stimulates the enzyme T7-RNA polymerase. Spermine stabilises the helical structure of RNA, particularly of virii. Both Spermine and Spermidine were first discovered in human semen. Both are now used in skin-care beauty creams. Spermidine and Spermine are derivatives of Putrescine, which smells putrid and is excreted by cells as a means of discarding polyamines. It might be no coincidence that Spermidine and Spermine are present in semen because semen also needs a supply of zinc to function efficiently, and both, being polyamines, are capable of binding to zinc.

Indeed, both Spermidine and 24-epi-Brassinolide (aka Brassinolide) are plant-growth regulators (but Brassinolide is not universally present in all plants, only a select few such as those belonging to the Brassicaceae (Cabbage) family). The toxic effects of salt or zinc metal stress on Mung Bean Vigna radiata (a Cabbage Family member) plants are completely overcome by the combination of these two plant-growth regulators. Zinc is in itself an essential micronutrient in all plants responsible for their normal growth and development, and all plants are capable of easily absorbing it. However too much zinc in the soil or water results in zinc toxicity in many plants not equipped to deal with this toxic influx. Plants unable to deal with an excess of zinc in the soil or water suffer inhibition of root-growth and stem-growth resulting in chlorosis and necrosis of leaves, damage to the photosynthetic machinery, significantly altered mitotic cell division as well as altered membrane integrity and permeability. Zinc kills cells in plants ill-equipped to deal with unwanted high concentrations in the soil or water. The presence of Spermidine or other polyamines and 24-epi-Brassionolide (a phytosterol present in many Brassicaceae plants) helps some plants to deal with excess zinc. Many others succumb to the toxic effects of zinc and will not grow in its excess presence.

Proline is a ubiquitous amino acid with a five-membered ring. It is capable of chelating heavy metal ion, but it also plays a role in managing the osmotic pressure within plants particularly with regard to salt and sea-water. Thus Proline may confer salt-tolerance. Growing near the sea or on mine waste tips Thrift is one such halophyte (salt-tolerant plant) which needs to regulate its sodium uptake and water loss. However, salt tolerance is conferred not by any one molecule, but by a whole raft of differing mechanisms and molecules, such as proline, glycine, glycine betain, proline betain, tertiary amines, choline o-sulfate, di-methyl sulfonium propironate etc, etc... Thrift is more salt tolerant than most, but does not grow in the sea-water like some halophytes (Common Cord-Grass (Spartina anglica) for instance).

In 2015 it was discovered that Melatonin not only occurs in mammals, but is also, much to the astonishment of everyone, ubiquitous in plants. Melatonin is capable of chelating heavy metal elements forming complexes, such as with cadmium and many others. Melatonin is also a highly multi-functional agent which offers environmental protection to the plant from all sorts of enemies such as pests, heat-stress, cold-stress, damaging ultra-violet light and almost anything else - see Hormones and Signalling Molecules.

So, all in all, plants have devised a variety of differing means of importing required essential heavy elements like zinc from soil to plant, especially if they are deficient in that element. Unfortunately, that same mechanism also imports excess nutrients over and above what it requires whilst at the same time not discriminating between unwanted toxic heavy elements such as lead or cadmium. Most plants have a strategy of safely sequestering away these unwanted absorbed heavy elements, but only up to a certain point; they are un-able to cope with high toxic loads in the soils and cannot flourish in such soils. In effect, they poison themselves. However, some plants such as Thrift and Bladder Campion are able to chelate large amounts of heavy elements safely away into vacuoles and are thus capable of tolerating, or even thriving, on soils so heavily laden with toxic heavy metals that they are the only few plants able to colonise such areas. A worthwhile strategy. It has paid off.


It is possible to utilise the affinity for metals in plant hyperaccumulators in a process called phytomining. However, the harvesting of the plants and extracting of metals from the biomass of the plant is an expensive process and yields are lowish. It is not currently cost-effective to mine cheap metals such as lead, copper or zinc by phytomining, but it may be more profitable for higher value metals such as thallium, nickel or cobalt. Gold would be even more promising, but no hyperaccumulator of gold has yet been found, although certain coniferous trees can accumulate gold up to parts per billion in the plant tissue. Gold under natural conditions is highly insoluble in soil, and this limits its bioavailability to plants.


But induced hyperaccumulation, by application of chemicals to the soil to promote bioavailability, can provide the basis for commercial extraction. Indian Mustard (Brassica juncea) has been experimentally induced to accumulate gold in leaf tissues up to 57ppm by dry weight. Lucerne (Medicago sativa ssp. sativa) when used with the inducing agent Thiourea can extract gold, but Garden Radish (Raphanus sativus), Beet (Beta vulgaris) and Wild Carrot (Daucus carota) have all been shown to accumulate gold up to 200ppm by dry weight. Other gold inducers are sodium cyanide, ammonium thiocyanate, ammonium thiosulfate. With the latter as the inducer Wild Turnip (Brassica rapa ssp. campestris) hyperaccumulates gold up to 304ppm by dry weight. However, as far as the Author can ascertain, none of these methods is currently used commercially to phytomine gold or any other metal.


Some hyper-accumulators of heavy metals are used for the phyto-remediation of land contaminated by heavy-metals. By growing plants such as Water Fern on contaminated waters or Stinking Fleabane on contaminated land, harvesting the plant every season, and safely disposing of the harvested material over several years it is possible to reduce the burden of heavy metals in contaminated water/land, but it is a slow iterative process sometimes requiring decades. The contamination will never be reduced to zero, since it is subject to the law of exponential decay, like reverberating sound in a church hall or the radioactive decay of radioisotopes.


Other heavy-metal tolerant plants (metallophytes) include: The metallophyte nature in many of these plants is geneticaly-adapted; where there are heavy metals they adapt themselves over a considerable period to coping with the metals. Conversely, where they are no heavy metals, they don't bother to genetically adapt: it would take effort to so do.

This list is incomplete...

 Plumbagin, despite its name, possesses no lead. It is a quinone and potential contact allergen found in the roots of the Thrift Family of plants, Plumbaginaceae. Furthermore it is also a yellow pigment. It may possess several useful pharmacological properties including cell apoptosis which may prove effective in treating cancer and which are still being investigated.

 Azalein (not to be confused with Azulene) is an anthocyanidin (the glycoside of the anthocyanin Azaleatin) found in both Rhododendron species and in flowers of the Thrift Family Plumbaginaceae. The glycoside involved is L-Rhamnoside. It is a pigment imparting a pinkish red hue to the flowers.

 Azaleatin, an O-methylated anthocyanid based upon the flavonol Quercetin, (it is actually 5-methoxy Quercetin) is also found in the same flowers as Azalein above.

  Armeria maritima  ⇐ Global Aspect ⇒ Plumbaginaceae  

family8Thrift family8Plumbaginacaea

 BSBI maps



Armeria maritima

Thrift Family [Plumbaginaceae]  

WildFlowerFinder Homepage